SAI graded
LAI due on Monday
So it's called Twitter?
This is a function consisting of:
1. a header (def ...): "def" is a keyword
2. a body (print ...): the body is indented using <tab>

def say_introduction():
 print("My name is Inigo Montoya.")

def threaten_vengeance():
 print("You killed my father.")
 print("Prepare to die.")

print("Hello.")

Hello.
Last class

```python
In [17]: # We can use functions that someone else wrote
import print_date_and_time # make a function available to you

print_date_and_time() # call the function
```

2019-06-08 10:06:47.104904
In [56]: # draw a simple house

 import drawSvg as draw

 x = -100 # shift house's horizontal position by this amount

d = draw.Drawing(200, 200, origin='center') # create canvas

d.append(draw.Rectangle(x+0,-100,100,100, fill='gray', stroke='black')) # body of house

d.append(draw.Lines(x+0, 0, x+100, 0, x+50, 50, close=True, fill='green', stroke='black')) # roof

d.append(draw.Rectangle(x+40,-100,20,50, fill='red', stroke='black')) # door

d.append(draw.Rectangle(x+15,-30,15,15, fill='white', stroke='black')) # left window

d.append(draw.Rectangle(x+70,-30,15,15, fill='white', stroke='black')) # right window

d # display drawing

Out[56]:

[Image of a simple house drawing]
print (style v. substance)

print("threaten vengeance")
print("threaten vengeance")
print("threaten vengeance")
print("threaten vengeance")
draw five rectangles of the same size 50 x 50
import drawSvg as draw

d = draw.Drawing(200, 200, origin='center')

d.append(draw.Rectangle(0,0,50,50, fill='red', stroke='black'))
d.append(draw.Rectangle(-20,35,50,50, fill='red', stroke='black'))
d.append(draw.Rectangle(5,45,50,50, fill='red', stroke='black'))
d.append(draw.Rectangle(-50,50,50,50, fill='red', stroke='black'))
d.append(draw.Rectangle(-100,10,50,50, fill='red', stroke='black'))

d
draw five rectangles of the same size 50 x 50
import drawSvg as draw

d = draw.Drawing(200, 200, origin='center')

d.append(draw.Rectangle(0,0,50,50, fill='red', stroke='black'))
d.append(draw.Rectangle(-20,35,50,50, fill='red', stroke='black'))
d.append(draw.Rectangle(5,45,50,50, fill='red', stroke='black'))
d.append(draw.Rectangle(-50,50,50,50, fill='red', stroke='black'))
d.append(draw.Rectangle(-100,10,50,50, fill='red', stroke='black'))

d
draw five rectangles of the same size 50 x 50
import drawSvg as draw

d = draw.Drawing(200, 200, origin='center')
r = 50 # assignment, not “equals”

d.append(draw.Rectangle(0,0,r,r, fill='red', stroke='black'))
d.append(draw.Rectangle(-20,35,r,r, fill='red', stroke='black'))
d.append(draw.Rectangle(5,45,r,r, fill='red', stroke='black'))
d.append(draw.Rectangle(-50,50,r,r, fill='red', stroke='black'))
d.append(draw.Rectangle(-100,10,r,r, fill='red', stroke='black'))

d
draw five rectangles of the same size 50 x 50

import drawSvg as draw

d = draw.Drawing(200, 200, origin='center')
r = 25 # assignment, not “equals”

d.append(draw.Rectangle(0, 0, r, r, fill='red', stroke='black'))
d.append(draw.Rectangle(-20, 35, r, r, fill='red', stroke='black'))
d.append(draw.Rectangle(5, 45, r, r, fill='red', stroke='black'))
d.append(draw.Rectangle(-50, 50, r, r, fill='red', stroke='black'))
d.append(draw.Rectangle(-100, 10, r, r, fill='red', stroke='black'))

d
Variables: int

meaning_of_life = 42
Variables: int

meaning_of_life = 42

print(meaning_of_life)
Variables: int

meaning_of_life = 42

print(meaning_of_life)

output: 42
Variables: int

meaning_of_life = 42
Variable Names

meaning_of_life
Variable Names

meaning_of_life

meaningOfLife
Variable Names

meaning_of_life

meaningOfLife

whatever
Variable Names

meaning_of_life ≠ Meaning_of_life

42_is_the_meaning_of_life

meaning_of_life = 42
Variables: int, long int

int : -2,147,483,648 ... 2,147,483,647

int : \(-2^{31} \ldots 2^{31}-1\)

long int : anything larger than an int
Variables: floating-point

\[a = 6 \]

\[a = 6.02 \]

\[a = 6.02 \times 10^{23} \]
Expressions and Operators

```python
print( 18 + 24 )
```
Expressions and Operators

print(18 + 24)

output: 42
Expressions and Operators

print(18 + 24)

expression
Expressions and Operators

print(18 + 24)
Expressions and Operators

```python
print( 18 + 24 )
```
operands
Expressions and Operators

addition +

subtraction -

multiplication *

division /

modulus (mod) %

9 % 4 -> 1
Expressions and Operators

\[
\begin{align*}
\text{print(} 24 + 3 \times 6) & \quad 42 \\
\text{print(} (24 + 3) \times 6) & \quad 162 \\
\text{print(} 100 / 5 \times 2) & \quad 40.0 \\
\text{print(} 100 / (5 \times 2)) & \quad 10.0
\end{align*}
\]
Typed Operators

\[\text{print((3 * 10) / 4) } \quad 7.5 \]
Typed Operators

```python
print((3 * 10) / 4)  # 7.5
print(30.0 / 4.0)    # 7.5
```
----- DRILL -----
Writes some code that draws a bullseye
an inner red circle superimposed atop
a green circle superimposed atop
an outer blue circle
(you should therefore see a red circle, green ring and blue ring)
define a single variable 's' that scales the size of the bullseye
(i.e. the radius of each circle)
----- DRILL -----
Write some code that draws a bullseye:
an inner red circle superimposed atop
a green circle superimposed atop
an outer blue circle (you should therefore see a red circle, green ring and blue ring)
define a single variable 's' that scales the size of the bullseye

import drawSvg as draw

d = draw.Drawing(200, 200, origin='center')

s = 0.5 # scale bullseye by this amount

d.append(draw.Circle(0,0,s*100, fill='blue')) # outer part
d.append(draw.Circle(0,0,s*75, fill='green')) # central part
d.append(draw.Circle(0,0,s*50, fill='red')) # inner part

d
Assignment Operator

\[x = 5 \]
Assignment Operator

\[x = 5 \]
\[y = 6 \]
Assignment Operator

\[x = 5 \]
\[y = 6 \]
\[x = 4 \]
Assignment Operator

```python
x = 5
y = 6
x = 4
z = x + 1
print(z)
```
Assignment Operator

x = 5
y = 6
x = 4
z = x + 1

print(z)
5
Assignment Operator

```python
x = 5
y = 6
x = 4
z = x + 1
print(z)  # 5
x = 5
print(z)  # 5
```
Assignment Operator

```python
x = 5
y = 6
x = 4
z = x + 1
print(z)  # Output: 5
x = 5
print(z)  # Output: 5
```
Assignment Operator

x = 5
y = 6
x = 4
x = x + 1

print(x)
Assignment Operator

```
x = 5
y = 6
x = 4
x = x + 1
print(x)  # 5
```
Variables: string

last_letter = "z"

print(last_letter)

output: z
Variables: string

print("hello")

hello = 5

print(hello)
print("4 + 7")

print(4 + 7)
Variables: string

print(4 + 7)

output: 11

print("hello " + "my name")

output: hello my name
print(float(4)) 4.0
print(int(3.14)) 3
print(str(4) + str(2)) 42
print(int("4") + int("2")) 6
Variables: boolean

x = True
print(x)
output: True

y = False
print(y)
output: False
Summary

• Variables
 • store information in computer memory
 • int, long int, float, string, booleans, functions
 • naming

• Expressions and Operators
 • arithmetic
 • just like functions
 • assignment